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Why it is worth to (at least try to)...

understand how physical reasoning & manipulation planning works...

and based on that continue thinking about learning.
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Why work on model-based planning?

• Arguments against:

– It’ll never work!

– All these model-based assumptions are insane!

– Perception will never “work”! Never provide precise objects, shapes, etc

– Precise tracking will never work!

– Partial observability!

– and general POMDPs will never work anyway!
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Why work on model-based planning?

• But:

Generalization!

– The generalization power of model-based reasoning is amazing!

– Daily work with planning algorithms: Get them to work for one instance, suddenly they work for
huge ensembles of related settings!

– See work on physical reasoning & sequential manipulation planning

Toussaint, Allen, Smith, Tenenbaum: Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning. R:SS’18

Toussaint, Ha, Driess: Describing Physics For Physical Reasoning: Force-based Sequential Manipulation Planning. RAL/IROS
2020

(Also work by many other TAMP researchers: Leslie Kaelbling, Tomás Lozano-Pérez, Caelan Garrett,
Neil Dantam, etc etc)

• I believe in that kind of generalization, leveraging geometric and physical
computation/modelling/priors/understanding
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• The question is:

How realize this kind of generalization in a real, noisy, imperfect, partially observable, hardly
perceivable, unexpectedly behaving world, where “literal state estimation” might never work.
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Learning to Do as Planned

• Transfer from model-based reasoning to robust, vision-based, stationary reactive policies

– Cf. guided policy search (Levine, Koltun, ICML’13)

– input re-mapping

• Leverage model-based planning methods to generate data
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Examples from different projects

◦

◦

◦

◦

◦

◦
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Learning to directly predict and control full solutions!

Driess, Ha, Toussaint: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial
Scene Image. RSS 2020

Driess, Ha, Toussaint: Learning Geometric Reasoning and Control for Long-Horizon Tasks from Visual Input. ICRA SUBMISSION
2021

Danny
Driess

Jung-Su
Ha• From a visual scene encoding, directly predict a solution!

• ...estimate a very strong heuristic over discrete decisions
that generalizes “1st order” (across objects)

• predict parameters of vision-based reactive control to execute
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Learning to predict skeletons from scenes

• Raw data D = {
(
Si, gi, ai1:Ki , F i

)
}ni=1 with scene Si, goal gi, skeleton ai1:Ki , feasibility F i

• Sequence training data D = {(Si, gi, ai1:Ki , f i)}ni=1 with f i = f i
1:K :

f i
j =


1 F i = 1

1 ∃
(
Sl, al1:Kl , g

l, F l
)
∈ D s.t. F l = 1, gl = gi, al1:j = ai1:j

0 else
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Learning to predict skeletons from scenes

• Separate encoding of predicates ā, ḡ and references O (as masks) 10/15



Learning to predict skeletons from scenes

◦

Driess, Ha, Toussaint: Deep Visual Reasoning: Learning to Predict Action Sequences for Task and Motion Planning from an Initial
Scene Image. RSS 2020
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Learning also vision-based execution control

• Use the model-based MPC solver to generate data for stationary reactive control of
solutions

• Train a vision-based network to imitate that control behavior

– Assume funnel policies where ė = −e; the NN defines funnel variable e.

– Also predict model-based cost-to-go estimate

Driess, Ha, Toussaint: Learning Geometric Reasoning and Control for Long-Horizon Tasks from Visual Input. ICRA SUBMISSION
2021
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Learning also vision-based execution control

◦

Driess, Ha, Toussaint: Learning Geometric Reasoning and Control for Long-Horizon Tasks from Visual Input. ICRA SUBMISSION
2021
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Discussion

• “New Horizons for Robot Learning”

– Aim for that kind of generalization, leveraging geometric and physical
computation/modelling/priors/understanding

– Reasoning as a core ingredient to robot learning
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Thanks

• for your attention!

• Deep Visual Reasoning: (RSS ’20)

• Learning Geometric Reasoning and Control... (ICRA’21 SUBMISSION)

Danny
Driess

Jung-Su
Ha

• Funding: This work was supported by the Max Planck Fellowship (MPI for Intelligent
Systems, Stuttgart), and the IMPRS (MPI).
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